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Abstract

One- and two-dimensional electron-spin echo envelope modulation (ESEEM) spectra of Kramers� multiplets in orientationally

disordered systems are simulated using a simple mathematical model. A fairly general high-field spin Hamiltonian is considered with

a general g-tensor and arbitrary relative orientations between all tensors involving the electron-spin S, the nuclear spin I, and their

interaction. The zero field splitting (ZFS) and the nuclear quadrupole interactions are, however, approximated by their respective

secular part in a way that retains all orientation dependencies and it is assumed that the nuclear quadrupole interaction is smaller

than the hyperfine interaction. These approximations yield an effective sublevel nuclear Hamiltonian for each EPR transition and

are sufficient to account for the most important characteristics of the ESEEM spectra of high electronic multiplets in orientationally

disordered systems. Moreover, they allow to obtain some analytical expressions that for I ¼ 1=2 illuminate important aspects of 2D

hyperfine sublevel correlation (HYSCORE) experiments in S ¼ 3=2, 5/2 systems. The pulses are considered as ideal and selective

with respect to the different EPR transitions. The contributions of the latter to the echo intensity are weighed according to their

different nutation angles and equilibrium Boltzmann populations. For simple axial cases with I ¼ 1=2, analytical expressions,

analogous to the S ¼ 1=2 case, were derived for: (i) the modulation depth, (ii) the lineshapes of the HYSCORE cross-correlation

ridges, and (iii) ENDOR powder pattern. Experimental results obtained from MnðD2OÞ2þ
6 and VOðD2OÞ2þ

5 in frozen solutions are

presented, compared, and analyzed in light of the theoretical part.

� 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Electron–spin echo envelope modulation (ESEEM)

spectroscopy has become a well-established technique for

the investigation of transition metal centers in a large

variety of systems and disciplines ranging from physics to

chemistry and biology. In recent years, the number of

available ESEEM pulse sequences has increased signifi-

cantly and it includes a variety of one-dimensional (1D)
and two-dimensional (2D) experiments [1–3]. One of the

most useful ESEEM experiment is the 2D hyperfine

sublevel correlation (HYSCORE) experiment, which

correlates nuclear transition frequencies belonging to

different electron-spin, MS , manifolds [4]. Most of the

ESEEM applications have so far been carried out on

S ¼ 1=2 systems. In this case, the theory is well estab-

lished and the characteristics of the spectra obtained

from the different pulse sequences are well understood
[5–7]. General expressions for the echo intensity gener-

ated by the various experiments have been derived, thus,

allowing to perform spectral simulations, which are

necessary for the interpretation of the spectra and the

extraction of the spin Hamiltonian parameters [5,6,8]. In

general, the majority of the theoretical derivations follow

the pioneering work of Mims [9] where the density matrix

formalism is used, ideal pulses are assumed, and the spin
Hamiltonian is expressed in a block diagonal form. Each

block in the Hamiltonian matrix represents an effective

nuclear Hamiltonian accounting for the nuclear mani-

folds within the two electron-spin states, a and b.

There are many systems of interest, which involve

metal ions with S > 1=2 which, in principle, should be

amenable to ESEEM investigations. The case of non-

Kramers� ions with a dominating zero field splitting
(ZFS) interaction was worked out for S ¼ 2 by Hoffman

and coworkers [10]. A few examples of ESEEM appli-

cations for half integer S > 1=2 spin systems have been
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reported so far and most of them have been analyzed
either qualitatively or by assuming an effective S ¼ 1=2

system [11–13]. These include transition metals such as

Mn(II) and Fe(III), which are important ions in

Chemistry and Biology. Therefore, the ESEEM theory

should be extended to include high-spin systems, to al-

low extensive data analysis, followed by a critical eval-

uation of the effectiveness and limitations of the method.

The notion that S ¼ 5=2 systems behave differently
than those with S ¼ 1=2 was already noted by Mims et al.

[14] who suggested to treat it as a superposition of inde-

pendent effective S ¼ 1=2 Hamiltonians. The first theo-

retical attempt to deal with two- and three-pulse ESEEM

for S ¼ 5=2 systems was carried out by Coffino and

Peisach [15]. They introduced important aspects such as

the inclusion of microwave (MW) irradiation in the

simulations, showing the EPR transition selectivity in the
presence of an appreciable ZFS with a dominating elec-

tron Zeeman interaction. They also showed that the

contribution of all EPR transitions should be considered,

since the modulation frequencies of the various transi-

tions are different. Moreover, they took into account

non-secular terms of the ZFS Hamiltonian and using

numerical diagonalization they found out that the time

domain ESEEM traces were affected by the ZFS in a way
that does not change significantly the nuclear modulation

frequencies. Furthermore, the authors considered si-

multaneously both the hyperfine interaction (hfi) of the
55Mn nucleus and of a ligand nucleus. They reported that

the 55Mn coupling does not affect the ESEEM frequen-

cies of the ligand. A more qualitative and pictorial rep-

resentation of the two- and three-pulse ESEEM has been

reported by Larsen et al. [16]. There, the S ¼ 1=2; 5=2
cases are visualized in a graphic form, revealing the var-

iation of the effective fields ‘‘seen’’ by the nucleus in the

different sublevels due to variation of the hfi.

In the present work, we extend Mims� theory [9],

aiming towards reasonably accurate and simultaneously

quick simulations of both 1D ESEEM (up to four pul-
ses) and 2D HYSCORE experiments in orientationally

disordered systems. The HYSCORE characteristics for

S ¼ 5=2 have not been examined so far. A particularly

important issue is whether correlations observed from

the various EPR transitions can have a significant effect

on the complexity of the spectrum as compared to the

S ¼ 1=2 case. The present derivations are applicable to

higher Kramers� multiplets coupled to an arbitrary nu-
clear spin, but include only the S- and I-secular terms in

the ZFS and the nuclear quadrupole interactions (nqi),

respectively. According to Coffino et al. [15] and Vardi

et al. [17], the non-secular ZFS terms of the Hamiltonian

do not affect the nuclear ENDOR/ESEEM frequencies

for relatively small hyperfine couplings and therefore

they have been neglected in the present work.

In the following, we first present the spin Hamilto-
nian used, its block diagonal representation, and with

that the definition of the effective nuclear sublevel

Hamiltonians, one for each electron-spin state. We give

expressions for the eigenvalues and eigenvectors of the

sublevel Hamiltonians, which are then incorporated into

the generalized echo expressions for two-, three-, and

four-pulse ESEEM and 2D HYSCORE experiments

(Fig. 1a). This is followed by a discussion of the different
nutation frequencies of the various EPR transitions and

their effect on the relative contributions of these EPR

transitions to the total echo intensity. A series of spec-

tral simulations is presented, illustrating the character-

istics of the 2D HYSCORE spectra expected under

various conditions and the properties of the sum com-

bination peak in two- and four-pulse experiments. The

appendices present analytical expressions for I ¼ 1=2
case for the modulation depth and cross-peak line-

shapes. Finally, some experimental HYSCORE spec-

tra of MnðD2OÞ2þ
6 ðS ¼ 5=2Þ are compared to those of

VOðD2OÞ2þ
5 ðS ¼ 1=2Þ and analyzed in terms of the

presented theoretical analysis.

Fig. 1. (a) The pulse sequences of the two- and three-pulse ESEEM and HYSCORE experiments. (b) A schematic representation of the energy-level

diagram showing the interrelation of the ðM $ M � 1Þ allowed EPR transition (m $ j), the forbidden EPR transition (k $ j) and the corresponding

ESEEM frequency (m $ k), shown by a dotted arrow. The labels of the nuclear states j, k, l, m are the unmixed nuclear projections.
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2. Theory

2.1. The spin Hamiltonian, eigenvalues, and eigenvectors

within the automatic diagonalization limit

The spin Hamiltonian for an S > 1=2 system inter-

acting with a nucleus with a spin I is:

H ¼ bB � g � ŜSþ ŜS �D � ŜSþ ŜS �A � ÎI� gNbNB � ÎIþ ÎI �Q � ÎI:
ð1Þ

The hfi of a paramagnetic metal ion with its own nucleus

is not included in the above expression, as it does not

affect the ESEEM spectrum [15]. To follow Mims�
treatment for S ¼ 1=2 [9], the Hamiltonian in Eq. (1)

should be partitioned into blocks, each representing a

nuclear sublevel Hamiltonian, HM , tagged by the elec-

tron-spin projection M ð� MSÞ. This creates 2S þ 1 such

Hamiltonians that will be considered as not interacting

with each other [15]. The block partitioning can be ac-

complished under the following circumstances: (i) Small

g-anisotropy that can be ignored in the MW irradiation
terms (see below) and (ii) the ZFS term is smaller than

the electron Zeeman term, and the tensor representing

the ZFS, D, can be considered only to first order.

Moreover, all the interactions are assumed to be S-

secular, in accordance with the high-field case. In this

work, we use the eigenbasis fjSMijInMi8ð�S6M 6 S
and �I 6 n6 IÞg obtained from the individually diago-

nalized HM �s of the direct product S-I-spin space by
using the transformations tM (see below) [18]. The cor-

responding sublevel nuclear eigenstates, jInMi, were ex-

plicitly written in terms of the regular nuclear basis

fjInig for M ¼ �1=2 in Ref. [18] and they will be re-

ferred here with respect to the M electron-spin state. The

explicit form of the eigenbasis is used only to obtain

Eqs. (8) and (9) in this work.

The individually diagonalized HM �s are finally given as:

HI
M ¼ x0

SðMÞ þ xI;MI 00z ðMÞ þ xðMÞ
nqi I

002
z ðMÞ: ð2Þ

The nuclear spin I has been used as a superscript, indi-

cating a reduced nuclear Hamiltonian HM with dimen-

sionality ð2I þ 1Þ. In Eq. (2), x0
SðMÞ corresponds to the

exact electron Zeeman frequency with respect to g and

includes also a first-order correction due the ZFS ac-

cording to:

x0
SðMÞ ¼ Mx0

0S þM2x0
ZFS with x0

0S ¼ g0bB0=�h; ð3Þ
where g0 is the effective g-factor [19,20].

The first-order ZFS frequency x0
ZFS is [19]:

x0
ZFS ¼ 3bþ � g �D � gþ � b

2g02 ; ð4Þ

where b is a unit vector along the magnetic field. The so-

called electron nuclear double resonance (ENDOR)

frequencies, xI;M , are first given in a vectorial form xI ;M

in angular frequency units [19,20]:

xI;M ¼ GMb with GM ¼ ðM=g0ÞgAþ x0I1; ð5Þ

where x0I ¼ �gNbNB0=�h is the nuclear Larmor fre-
quency. The magnitude, xI;M ¼ jxI ;M j ¼ ðbþGþ

MGMbÞ1=2

of the nuclear frequency vectors for each electronic

sublevel M, was used in Eq. (2). The nqi is also

considered here as a first order correction, taking into

account only secular terms according to:

xðMÞ
nqi ¼ 3bþ �Gþ

M �Q �GM � b
2x2

I ;M

: ð6Þ

To obtain relations (4) and (6), the components of D

and Q were written in the g principal frame and rotated

to the quantization frame of reference of the electron-

spin and the nucleus, respectively, where only terms

proportional to S0
z and I 00z ðMÞ were selectively retained.

According to the present treatment, the corrections to

the modulation frequencies due to the nqi can be added

at the last stage of the signal computations by using
Eq. (2) for the diagonalized sublevel Hamiltonian, as

described in Ref. [18].

Neglecting electron-spin mixing, the EPR transition

probabilities that determine the amplitudes of the

ESEEM modulations are [21]

IEPR
M ;n$M 0 ;n0 / DqM ;M 0 jhSM jhInM jSþjSM 0ijIn0M 0 ij2

¼ DqM ;M 0 � dM 0 ;M�1 � ½SðS þ 1Þ

�M 0ðM 0 þ 1Þ� � jhInM jIn0M 0 ij2

� DqM ;M 0 � dM 0 ;M�1 � CM ;M 0 � jhInM jIn0M 0 ij2; ð7Þ

where DqM ;M 0 is the population difference of the M

and M 0 states, which according to the Boltzmann sta-

tistics is given by DqM ;M 0 � qM � qM 0 / expð�EM=kT Þ�
expð�EM 0=kT Þ. The mixing of the jInMi nuclear states of

the sublevel Hamiltonian, HI
M , depends on the M value

of corresponding sublevel.

In the S ¼ 1=2 case, M ¼ 1=2, M 0 ¼ �1=2, and the

mutual projection hInM jIn0M 0 i is usually given by the

matrix elements of the Mims matrix M [9], here denoted

as tM ;M 0
[18]. The latter is the matrix product of the di-

agonalizing transformations of the two sublevels, i.e.,
tþM tM 0 � tM ;M 0

. This matrix, under autodiagonalization

conditions (ideal pulses and consideration of the nqi

only to first order), was shown to be proportional to a

single matrix element of the Wigner rotation matrix

according to [18]:

tnn0 � hInajIn0bi ¼ dðIÞ
nn0 ð#tÞ; ð8Þ

where #t is the angle between the nuclear quantization

axes in the M ¼ �1=2 and M ¼ 1=2 manifolds.

If the electronic mixing by the ZFS in higher multiplets

ðS > 1=2Þ can be disregarded, under conditions of selec-

tive excitation [14,15] each EPR transition, M $ M 0, can

be considered as an isolated two-level spin system, defined

by the projections M ;M 0 [16]. Accordingly, the relations
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for S ¼ 1=2 can be generalized such that#t depends on the
projections of the electronic transition M $ M 0 (usually

M 0 ¼ M � 1Þ

tM ;M 0

nn0 � hInM jIn0M 0 i ¼ dðIÞ
nn0 ð#M ;M 0

t Þ: ð9Þ
The #M ;M 0

t angles are obtained from the ENDOR fre-
quency vectors, xI;M , according to [16,18]:

xI ;M � xI;M 0 ¼ jxI ;M jjxI ;M 0 j cos#M ;M 0

t : ð10Þ

The final result for the intensity of the electronic tran-

sitions is thus simply,

IEPR
M ;n$M 0;n0 / DqM ;M 0 � dM 0;M�1 � CM ;M 0 � ½dðIÞ

nn0 ð#M ;M 0

t Þ�2: ð11Þ

This approximate relation presents the important fac-

tors that should be incorporated for the selective irra-

diation in the ESEEM simulations.

2.2. Expressions and properties of the echo signals

Considering only the jDM j ¼ 1 transitions, the elec-

tron-spin echo signal becomes:

lx ¼ gbRe
XS

M¼�Sþ1

hSþiM ;M�1
Sequence

" #
ð12Þ

and the two-, three-, and four-pulse echo sequences can

be obtained using the density matrix formalism ac-

cording to Mims [9], evolving from the Boltzmann

equilibrium by predefined sequences of precession and
nutation periods.

The contribution of the transition M $ M � 1 to the

primary echo is:

hSþðsÞiM ;M�1
2p ¼ KM ;M�1

2p

X
j;k;l;m

ð�1Þj�kþl�mdðIÞ
jk ð#M ;M�1

t Þ

� dðIÞ
kl ð#M ;M�1

t ÞdðIÞ
lm ð#M ;M�1

t ÞdðIÞ
mj ð#M ;M�1

t Þ
� exp½�iðxkm

I;M�1 þ xlj
I;MÞs� ð13Þ

and

KM ;M�1
2p ¼ ð1=2ÞDqM ;M�1CM ;M�1 sin bM ;M�1

p1

� sin2ðbM ;M�1
p2 =2Þ: ð14Þ

In this representation, each EPR transition is treated

quantitatively as an effective S ¼ 1=2 system with well-

defined contributions to the echo that depends on M

and M � 1. The indices k, m correspond to the nuclear

sublevel in the M � 1 manifold whereas the l, j indices

describe the nuclear sublevels within the M manifold

(see Fig. 1b). The modulation frequencies for the nuclear
levels i, j are generally defined as the appropriate dif-

ferences xij
I ;M ¼ ðEi

I;M � Ej
I ;MÞ=�h of the i and j eigenvalues

of the sublevel Hamiltonian HI
M . They can be computed

with any degree of accuracy depending on the method

[19,22] and in the limits of the autodiagonalization case

[18] they are given by the simple relation xij
I;M ¼ ði� jÞ

xI ;M þ ði2 � j2ÞxðMÞ
nqi , according to Eq. (2). Practically,

only those nuclear frequencies for which x1S ¼ 2pgb
B1=�h > jxij

I ;M j, where B1 is the applied microwave field,

will be observed [23]. The angles bM ;M�1
p1 and bM ;M�1

p2 refer

to the nutation angles of the first and second MW pul-

ses, respectively. A maximum echo intensity, determined

by KM :M�1
2p (Eq. (14)), is obtained for bM ;M�1

p1 ¼ p=2 and

bM ;M�1
p2 ¼ p. An analytical expression for the modulation

depth for the simple case of I ¼ 1=2, derived from the

sum of the various dðIÞ
jk ð#

M ;M�1
t Þ terms, is presented in

Appendix A. For the general case (not under autodi-

agonalization conditions), the expressions developed by
Mims for S ¼ 1=2 should be used, replacing the M

matrix elements with the appropriate MM ;M�1
ij matrix

elements [9].

The stimulated echo signal (three-pulse ESEEM)

from the EPR transition M $ M � 1 is given by:

hSþðs; T ÞiM ;M�1
3p � V I

Mðs; T Þ þ V I
M�1ðs; T Þ

¼ KM ;M�1
3p

X
j;k;l;m

ð�1Þj�kþl�mdðIÞ
jk ð#M ;M�1

t ÞdðIÞ
kl

� ð#M ;M�1
t ÞdðIÞ

lm ð#M ;M�1
t ÞdðIÞ

mj ð#M ;M�1
t Þ

� exp½
n

� iðxlj
I ;M þ xkm

I;M�1Þs�
� expð � ixlj

I;MT Þ þ exp½ � iðxlj
I;M�1

þ xkm
I;MÞs� expð � ixlj

I ;M�1T Þ
o

ð15Þ

with

KM ;M�1
3p ¼ ð�1=2Þ3DqM ;M�1CM ;M�1 sin bM ;M�1

p1

� sin bM ;M�1
p2 sin bM ;M�1

p3 : ð16Þ

In this case, the maximum stimulated echo intensity is

obtained for nominal pulse angles of p=2 for all three

pulses.

The expression for the echo intensity in the HY-

SCORE experiment that contribute to the cross peaks

is:

hSþðs; t1; t2ÞiM ;M�1
hysc;x � V I

M ;M�1;xðs; t1; t2Þ þ V I
M�1;M ;xðs; t1; t2Þ

ð17Þ
and

V I
M ;M�1;�ðs; t1; t2Þ¼KM ;M�1

HYSC;�

X
j;k;l;m;n;p

ð�1Þj�kþl�mþn�pdðIÞ
jk

�ð#M ;M�1
t ÞdðIÞ

kl ð#M ;M�1
t ÞdðIÞ

lm ð#M ;M�1
t Þ

�dðIÞ
mnð#M ;M�1

t ÞdðIÞ
np ð#M ;M�1

t ÞdðIÞ
pj ð#M ;M�1

t Þ
� exp½�iðxlj

I ;M þxkm
I ;M�1Þs�

� expð�ixln
I ;Mt1Þexpð�ixkp

I;M�1t2Þ:
ð18Þ

The overall intensity coefficients of the cross-correlation

peaks are,

KM ;M�1
HYSC;� ¼ ð1=2Þ3DqM ;M�1CM ;M�1 sin bM ;M�1

p1

� sin bM ;M�1
p2 sin2ðbM ;M�1

p3 =2Þ sin bM ;M�1
p4 : ð19Þ
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In this case, the echo intensity is maximized for nominal
angles of p=2 for p1, p2, and p4, and p for p3. The echo

expression for the 1D four-pulse ESEEM sequence can

be derived from Eq. (18) by setting t1 ¼ t2 ¼ t. Using the

properties of the reduced Winger matrix dðIÞ, it can be

shown that in the above expressions the intensity of the

echo signals are real quantities [18].

2.3. Nutation frequencies and selective excitation

The nominal pulse angles of the selected EPR transi-

tions are ðM ;M � 1Þ-dependent according to: bM ;M�1
p ¼

CM ;M�1x1Stp, where tp is the pulse duration and CM ;M�1 is

defined in Eq. (7). Consequently, it is impossible to si-

multaneously maximize the contributions of all EPR

transitions to the echo. For the same MW power and

pulse duration, the effective nutation angle of the various
EPR transitions can be related to that of a reference

transition according to:

bM ;M�1
p ¼ CM ;M�1

CSref

Mref ;Mref�1

bref
p : ð20Þ

Table 1 lists the effective nutation angles of the various

EPR transitions with respect to an S ¼ 1=2 system and to

the j � 1=2i $ j1=2i transition of the S ¼ 5=2 sextet. The

different nutation frequencies of the various transitions

make the relative contribution of each transition to the

total echo intensity power dependent. Fig. 2 shows the

x1S dependence of the contribution of the various EPR
transitions in a HYSCORE experiment to the echo in-

tensity for pulse durations tp1 ¼ tp2 ¼ tp4 ¼ 20 ns and

tp3 ¼ 40 ns, which are typically employed experimentally.

In this calculation, only the EPR transition probabilities

and the nutation frequencies were taken into account,

based on Eq. (19) without considering the different in-

homogeneous broadening of the transitions and the

temperature. By setting x1S=2p ¼ 7:5 MHz, it should be,
in principle, possible to isolate the contributions of the

j � 5=2i $ j � 3=2i transitions. In contrast, the

j � 3=2i $ j � 1=2i and j � 1=2i $ j1=2i transitions

have very similar nutation profiles and cannot be effec-

tively distinguished by MW power variation.

The different nutation frequencies of the EPR tran-

sitions result in significant presence of diagonal peaks in

the HYSCORE spectrum as a consequence of incom-
plete inversion by the third pulse for some of the tran-

sitions. The relative intensities of diagonal peaks can be

obtain from Eq. (17) with:

V I
M ;M�1;aðs; t1; t2Þ ¼KM ;M�1

HYSC;a

X
j;k;l;m

ð�1Þj�kþl�mdðIÞ
jk ð#M ;M�1

t Þ

� dðIÞ
kl ð#M ;M�1

t ÞdðIÞ
lm ð#M ;M�1

t ÞdðIÞ
mj ð#M ;M�1

t Þ

� exp
h
� iðxlj

I ;M þxkm
I;M�1Þs

i
� exp

�
� ixlj

I;Mðt1 þ t2Þ
	
; ð21Þ

where

KM ;M�1
HYSC;a ¼ ð1=2Þ3DqM ;M�1CM ;M�1 sin bM ;M�1

p1

� sin bM ;M�1
p2 cos2ðbM ;M�1

p3 =2Þ sin bM ;M�1
p4 : ð22Þ

In the following, these peaks will be referred to as au-

tocorrelation peaks. Their presence is troublesome as

they can mask cross-peaks originating from small hy-

perfine couplings that are close to the diagonal.

The reason for the non-negligible contribution of the
autocorrelation terms here is twofold: (i) The deviations

of the nutation angle bM ;M�1
p3 from p different for the

various transitions and (ii) even though the

cos2ðbM ;M�1
p3 =2Þ factor is small in comparison to

sin2ðbM ;M�1
p3 =2Þ in the cross-correlation term in Eq. (19),

it is compensated by the greater amplitudes of the co-

efficients in the terms of the sums in Eqs. (18) and (21).

Because the quantities djk are typically smaller than a

unity, being products of the trigonometric functions of

the same transformation angle #M ;M�1
t , a four-factor

product of the djk elements in the autocorrelation signal

is larger than the six-factor product in the cross-corre-

lation signal.

There are two more factors that have to be taken into

account when the relative contributions of the various

EPR transitions to the ESEEM/HYSCORE spectra are

considered, one is the Boltzmann population and the

other is the different inhomogeneous broadening of the
EPR transitions in the case of orientationally disordered

systems. The contribution of the j � 1=2i $ j1=2i tran-

sition is the largest, as long as it is within the irradiation

bandwidth, because its broadening is only a second or-

der effect [24]. To take explicitly these effects into

Table 1

The effective nutation angles of the various EPR transitions for a S ¼ 5=2 system relative to a S ¼ 1=2 system and relative to the j � 1=2i $ j1=2i
transition of a S ¼ 5=2 system (see Eq. (20))

Spin S Reference transition EPR transition

j � 1=2i $ j1=2i j � 1=2i $ j1=2i j � 5=2i $ j � 3=2i j � 3=2i $ j � 1=2i

bM :M�1
p1 bM :M�1

p2 bM :M�1
p1 bM :M�1

p2 bM :M�1
p1 bM :M�1

p2 bM :M�1
p1 bM :M�1

p2

1/2 p=2 p 3p=2 3p 51=2p=2 51=2p 81=2p=2 81=2p

5/2 p=2 p p=2 p ð51=2=6Þp ð51=2=3Þp ð81=2=6Þp ð81=2=3Þp
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account, the EPR spectrum should be simulated in-

cluding the ZFS term and the specific orientations that

contribute to the echo at a given field and irradiation

settings should then be determined. Fig. 3 shows an

example of the experimental two-pulse field-sweep echo-

detected (FS-ED) EPR spectrum of MnðD2OÞ2þ
6 and

simulations obtained with spin Hamiltonian parameters

taken from Ref. [25], and taking into account the nu-
tation and population factors optimized for the

j � 1=2i $ j1=2i transition (see Table 1). The nuclear

modulation effect was not included and we believe that

it is the major reason for the deviations between the

experimental and calculated traces [26,27].

3. Experimental

Samples of 2 mM VOðD2OÞ2þ
5 and MnðD2OÞ2þ

6 were

prepared by dissolving the appropriate amounts of

MnCl2 and VOSO4 in 50:50 water:glycerol. Pulsed EPR

experiments were carried out at � 8:5 GHz and 8 K,

using a homebuilt spectrometer [28]. FS-ED EPR

spectra were recorded using the two-pulse echo sequence

with MW pulses of 20 and 40 ns, respectively. The
HYSCORE spectra were recorded using the sequence

shown in Fig. 1a [4], where the echo is measured as a

function of t1 and t2. The duration of both the p=2 and p
pulses was 30 ns, while the amplitude of the p pulse was

twice that of the p=2 pulses. The increment of t1 and t2
was 40 ns and ð130 � 130Þ points were collected. The

appropriate phase cycles, eliminating unwanted echoes,

were employed in all experiments [23].
The HYSCORE data were treated with the Bruker

WINEPR software. The background decay in both the

t1 and t2 dimensions was removed using a polynomial fit,

the data were then apodized with Hamming or sinbell

windows and after zero filling to 512 points in each di-

mension, Fourier transformation (FT) was carried out

in the two dimensions. The spectra shown are contour

plots in magnitude mode with a linear scaling of the
contour intervals.

3.1. Simulations

The Mn2þ EPR simulations were carried out using a

program developed in-house employing third order

perturbation theory [29]. The HYSCORE simulations

were performed using two simulation programs. The
first is a modified version of TRYSCORE [8] where the

representation of the Hamiltonian in terms of a two

block diagonal form corresponding to the nuclear

Hamiltonian Ha and Hb has been changed to that cor-

responding to a specific EPR transition, HI
M , HI

M�1 (Eq.

(2)) as described in the previous sections. The ZFS was

not taken into account in the ESEEM calculations, ex-

cept in some cases where it was used in the calculation of
relative intensity factors (based on simulations of the

EPR spectra) of the various transitions to generate a

total HYSCORE spectrum. In this program, the HI
M

matrices were diagonalized numerically and therefore

they were not limited to small quadrupole couplings, as

opposed to the description given in the present work.

The second program used was ‘‘autodiaGal’’ which is

Fig. 3. Simulated X-band EPR powder patterns of the various tran-

sitions in Mn2þ and the total spectrum obtained with D ¼ �555 MHz,

E=D ¼ 0:1, aisoð55MnÞ ¼ 225 MHz and T ¼ 8 K (line width for the

j � 1=2i $ j1=2i transition was 140 MHz and for all others 196 MHz),

compared with the experimental FS-ED EPR spectrum of MnðD2OÞ2þ
6

reworded at 8 K with s ¼ 0:35ls.

Fig. 2. Plots of the relative factor KM ;M�1
HYSC;� of the HYSCORE experi-

ment (not including DqM ;M�1), Eq. (19), for the various EPR transi-

tions in a S ¼ 5=2 system and of a S ¼ 1=2 system as a function of the

MW field x1S=2p, for pulse lengths of 20 ns for p1, p2, and p3 and 40 ns

for p4. The dashed line marks the value of x1S=2p for which a maxi-

mum echo intensity for the j � 1=2i � j1=2i transition is obtained.
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based on the approach presented in this work. All the
simulated 1D ESEEM spectra and some HYSCORE

spectra were obtained using the second program. Both

programs gave the same results for the Hamiltonian

parameters used in this work (small nqi).

4. Results

4.1. Simulations

4.1.1. Two-pulse ESEEM spectra

Fig. 4 shows the sum and the individual contributions

of the various EPR transitions of an S ¼ 5=2 system

with an isotropic g-factor and a weakly coupled proton

to the two-pulse ESEEM spectrum (amplitude mode). In

the sum spectrum- the sub-spectra were weighted only
according to the nutations factors, Eqs. (14) and (20),

where the pulses were optimized for the central

j � 1=2i $ j1=2i transition. For this simple system, the

orientation-dependent ENDOR/ESEEM frequencies

are given by:

mI;M ¼ ½ðm0I þMAÞ2 þM2B2�1=2
; ð23Þ

where m0I ¼ x0I=2p. For an axial hfi, A ¼ aiso þ T?
ð3 cos2 #� 1Þ and B ¼ 3T? cos# sin#, where # is the

angle between the principal z-axis of the hfi and the

magnetic field, aiso is the isotropic hyperfine coupling,

and �T? is the perpendicular anisotropic component.

The powder pattern of the j � 1=2i $ j1=2i transition

(Fig. 4) is the narrowest, as expected from Eq. (23), due

to the smallest magnitude of the anisotropic contribu-
tions, jMT?j. A more detailed description of the powder

lineshapes is given in Appendix C. In the following, we

shall refer to the ESEEM/HYSCORE frequencies in

frequency units labeled by m ¼ x=2p and not in angular

units x as in the theoretical part, to be consistent with

the experimental results.

The expression for the two-pulse echo (Eq. (13))

shows that sum and difference modulation frequencies
are expected. For S ¼ 1=2, and at least for I ¼ 1=2 and

I ¼ 1 with a small nqi, as in 2H, the sum-combination

harmonic, ma þ mb, gives rise to a relatively narrow peak,

even in orientationally disordered samples [30,31]. The

presence of this line in the ESEEM spectra turned out to

be most useful as its frequency shift, D, from 2m0I pro-

vides directly the anisotropic hfi according to [30]:

D ffi 9T 2
?=16m0I : ð24Þ

For S ¼ 5=2, the orientational averaging of all the sum-

combinations of the ENDOR/ESEEM frequencies

ðmI ;M þ mI ;M�1Þ for the ðM $ M � 1Þ transitions should

include probabilities, depending on the irradiation

conditions, temperature, and size of the ZFS. However,
as shown in Fig. 4, among all EPR transitions only the

ESEEM spectrum arising from the j � 1=2i $ j1=2i
transition exhibit a narrow combination line due to

significant cancellation of the anisotropy introduced by

the A term (see Eq. (23)). Consequently, this line is su-

perimposed on a broad background due to the other

transitions. A similar behavior is expected for the four-

pulse experiment.

Fig. 4. The individual sub-spectra of two-pulse ESEEM (magnitude mode), along with their sum (weighted according to the relative nutation angles

with the central j1=2i $ j � 1=2i transition taken as reference) for a single proton coupled to an S ¼ 5=2 electron-spin multiplet with

aiso ¼ �0:6 MHz T? ¼ 1:70 MHz and B0 ¼ 3300 G.

132 N. Ploutarch Benetis et al. / Journal of Magnetic Resonance 158 (2002) 126–142



4.1.2. Cross-peak lineshapes in HYSCORE spectra

In this section, we describe the characteristics of the

HYSCORE cross-peaks for each of the EPR transi-

tions for S ¼ 3=2; 5=2 systems under the conditions of

weak to intermediate couplings. We begin with the

simplest system, S ¼ 3=2 coupled to one nucleus with

I ¼ 1=2 with hyperfine parameters that are relevant to
15N. We chose 15N rather than 1H because the 1H high

Larmor frequency leads to relatively high ESEEM
frequencies in the case of transitions other than

j � 1=2i $ j1=2i, which may be difficult to observe

experimentally. Fig. 5 shows the HYSCORE spectra,

corresponding to each of the EPR transitions. The

parameters used are appropriate for a directly coordi-

nated nitrogen of an imidazole ligand (see figure cap-

tion for details) and they correspond to a situation

between strong and weak coupling. No broadening was
added to the spectra to allow a clear observation of the

shapes of the ridges. A simple way to understand the

cross-peak characteristics in orientationally disordered

systems is to consider only the extrema and the sin-

gularities of the ENDOR frequencies, as given in Eq.

(B.4). The pattern of the j � 1=2i $ j1=2i transition is

similar to that observed for S ¼ 1=2 and the peaks

appear in both ð�;þÞ and ðþ;þÞ quadrants. To first
order, they are centered around m0I and they run per-

pendicular to the diagonal (along m1 ¼ m2Þ such that the

projection on each of the frequency axes has the same

width and give the hyperfine anisotropy (this is more

obvious in Fig. 6). In the present case- the first order

description fails due to the matching condition

j2aiso þ T?j ffi 4m0I , which is approximately satisfied for

M ¼ �1=2 and the deviation from a 45� slope for the
ridges becomes large.

In the other EPR transitions, the identical sign of M

and M � 1 leads to ridges that run along the diagonal,

but not parallel to it, since the effective anisotropy is

different in the M ¼ �1=2 and M ¼ �3=2 manifolds.

The line that goes through the centers of the ridges for

the transition j1=2i $ j3=2i (marked as a dotted line on

the spectrum in Fig. 5) intercepts the diagonal at a point
corresponding to m0I þ aiso þ T?=2 ¼ 4:05 MHz, while

the corresponding point for the j � 3=2i $ j � 1=2i
transition is jm0I � ðaiso þ T?=2Þj ¼ 1:21 MHz. These

points should be identical to the midpoints of the skyline

projections for the pairs of ridges considered. The above

numerical values agree with the general first order ex-

pression obtained by the simple arithmetic average

jhmM þ mM�1ij ¼ jm0I þ ðM � 1=2Þ � ðaiso þ T?=2Þj of the
center of the cross-peaks of the transition ðM $ M � 1Þ,
obtained from Eq. (B.4). The peaks of the j � 3=2i $
j � 1=2i transition appear almost parallel to one of the

axes due to the approximate matching condition, which

is met for the M ¼ �1=2 manifold involved in this

transition. A more detailed analysis of the shapes of the

ridges using analytical expressions for the I ¼ 1=2 case is

given in Appendix B. The arguments used above con-

cerning the ridge extension and projections are roughly

valid for higher nuclear spins too. The presence of a

Fig. 5. Simulated HYSCORE spectra of the individual EPR transitions

for S ¼ 3=2 coupled to an 15N nucleus ðI ¼ 1=2Þ. Parameters:

aiso ¼ 2:44 MHz; T? ¼ 0:39 MHz; m0I ¼ 1:42 MHz (corresponding to

static field 3300 G). These parameters are typical for the imidazole

nitrogen in high-spin Co2þ complexes [38]. In the sum spectrum the

sub-spectra were weighted only on the basis of the different nutation

frequencies and transition probabilities.
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Fig. 6. Simulated HYSCORE spectra of (a) one and (b) two 2H nuclei coupled to an S ¼ 5=2 system, showing the sub-spectra corresponding to each

of the EPR transitions and (c) their sum, weighted according to the nutation frequencies (optimized for the j � 1=2i $ j1=2i transition), temperature,

and relative EPR intensity at the field of 3387 G (obtained from simulations of the EPR spectrum). The parameters used in the simulations were:

aiso ¼ 0:1 MHz, T? ¼ 0:8 MHz, e2qQ=h ¼ 0:2 MHz, and g ¼ 0:15 MHz. In all spectra the ridges labeled ‘‘1’’ correspond to (msq1;2
M , msq1;2

M�1), ‘‘2’’ to (mdqM ,

msq1;2
M�1), ‘‘3’’ to (msq1;2

M , mdqM�1), and ‘‘4’’ to ðmdqM ; mdqM�1Þ.
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significant aiso is manifested by a well-noticed shift of the

cross-peaks along the diagonal and a better resolution of

the contributions of the different manifolds.

Fig. 6 shows the calculated HYSCORE spectra cor-

responding to each of the EPR transitions for S ¼ 5=2

coupled to a single deuterium nucleus, I ¼ 1, where a

small typical quadrupole interaction ðe2qQ=h ¼
0:2 MHz) appropriate for deuterons [32] has been taken
into account. In these simulations, aiso is small and the

hfi parameters were taken from those of MnðH2OÞ2þ
6

[25] scaled according to the appropriate c ratio. For

I ¼ 1, there are three nuclear frequencies for each elec-

tron-spin manifold, two corresponding to single quan-

tum nuclear transition, labeled msq1
M and msq2

M , and the

third corresponding to a double quantum nuclear tran-

sition, labeled mdqM . When e2qQ=h is small relative to
meff ðMÞ ¼ jm0I þMAj; msq1

M ffi msq2
M � msqM and mdqM ¼ 2mdqM .

The 2D spectra in the left column of Fig. 6a represent

sub-spectra, corresponding to the individual EPR tran-

sitions. They show, in addition to the main two

ðmsqM ; m
sq
M�1Þ ridges, similar to those observed in Fig. 5,

additional, weaker ridges corresponding to higher order

transitions of the type ðmdqM ; msqM�1Þ; ðm
sq
M ; m

dq
M�1Þ, and ðmdqM ;

mdqM�1Þ as identified in the figure. The intensity of these
ridges increases with increasing e2qQ=h. Since all cross-

peak pairs are symmetric with respect to the diagonal,

for the sake of brevity in the following we shall refer

only to one of them. In the absence of a line width,

contour plots do not portray well the relative intensities.

For example, the intensities of the ridges in the ðþ;þÞ
quadrant of the j3=2i $ j5=2i transition are rather low

as clearly shown in Fig. 7 where a line width has been

introduced.

The spectra shown in Fig. 6b were calculated with

the same parameters but with two identical nuclei.

The main difference between the two sets is the in-

creased intensity of the high order peaks for the two-
nuclei case. This is expected considering the relation

used to calculate the HYSCORE echo intensity for n

nuclei [31]:

Fig. 6. (continued)

Fig. 7. Similar to Fig. 6b after apodization with a Hamming window.
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where V I
M ;M�1ðs; t1; t2Þ and V I

M�1;Mðs; t1; t2Þ are given in

Eq. (18) and F is a multiplication factor in analogy to

the S ¼ 1=2 case. Eq. (25) shows that combination fre-

quencies within each manifold are generated. Fig. 6c

presents the superposition of the sub-spectra, weighted

according to the nutation frequencies, temperature of

8 K, and relative intensities of the EPR transitions at

3387 G (see Fig. 3). This shows that the contributions
from all transitions other than the j � 1=2i $ j1=2i
transition are reduced due to extensive inhomogeneous

broadening in orientationally disordered systems. The

total spectrum also shows that a significant decrease in

resolution is expected when all transitions contribute to

the echo.

To allow a clear observation of the shapes of the

ridges of various EPR transitions, all spectra shown in
Fig. 6 were displayed without the introduction of a line

width that accounts for the echo decay and nuclear spin

relaxation. Such a situation is, unfortunately, never en-

countered experimentally and Fig. 7 shows the sub-

spectra of the two-nuclei case after apodization with a

Hamming window similar to that used experimentally.

These spectra show that the contributions of all the

transitions, except j � 1=2i $ j1=2i, appear primarily as
extension along the diagonal, with a general loss of

resolution. Comparison of the spectra of one and two

nuclei (Figs. 6 and 7) shows that the appearance of high

order peaks is primarily a consequence of the presence

of several nuclei and originate from the j � 1=2i $ j1=2i
transition and not from the high-spin character of the

system. The contribution of the other transitions to the

high order peaks is just too weak, at least for the present
set of parameters.

4.2. Experimental spectra

The HYSCORE spectra of VOðD2OÞ2þ
5 ðS ¼ 1=2Þ and

MnðD2OÞ2þ
6 ðS ¼ 5=2Þ in frozen solutions were com-

pared to verify the above lineshape predictions and as-

sess the relative contributions of the various EPR
transitions. Fig. 8 displays the FS-ED EPR and two

HYSCORE spectra of VOðD2OÞ2þ
5 recorded at field

position (a), where all orientations contribute to the

echo, and at position (b), where only complexes which

have their g? direction parallel to the magnetic field are

selected. In addition to the peaks corresponding to

ðmsq
1=2

; msq�1=2
Þ, centered at (2.5, 2.5) MHz, cross-peaks of

the type ðmsq
1=2

; mdq�1=2
Þ and ðmdq

1=2
; mdq�1=2

Þ at (2.5, 4.5–7) MHz

and (4.8, 4.8) MHz, respectively, appear. These are due

to the presence of a large number (10) of deuterons (see

Eq. (25)).

Spectra of MnðD2OÞ2þ
6 recorded at several B0 values

within the EPR powder pattern are shown in Fig. 9.

Two spectra (b, c) were recorded with the magnetic

field set within the center of the EPR powder pattern,

where the dominating contributions are from the
j � 1=2i $ j1=2i and j � 3=2i $ j � 1=2i transitions

(see Fig. 3). The spectra are rather similar, the main

differences are in the width of the ðmsq
1=2

; msq�1=2
Þ and (mdq

1=2
,

mdq�1=2
) peaks along the perpendicular to the diagonal

ðm1 ¼ �m2Þ. In both spectra, higher order cross-peaks at

(3msq
1=2

, msq�1=2
), (3msq

1=2
, 2msq�1=2

), and ð3msq
1=2

; 3msq�1=2
Þ appear.

The spectrum recorded at field positions (a), where the

relative contribution of the j � 1=2i $ j1=2i transition
is expected to be significantly diminished, is not very

different from the other two, except that the lineshape of

Fig. 8. (A) ED-EPR spectrum of VOðD2OÞ2þ
5 and experimental HY-

SCORE spectra of VOðD2OÞ2þ
5 recorded at 3274 (B) and 3308 (C).

These fields correspond to positions a and b, respectively, in the echo-

detected EPR spectrum. The spectra were recorded at 8 K and with

pulse delay s ¼ 0:33ls.
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the ðmsq
1=2

; msq�1=2
Þ peak has changed. It narrowed in the

m1 ¼ �m2 direction (as compared to the (b) spectrum).

The HYSCORE spectrum recorded at 3670 G, where the

relative intensity of the j � 1=2i $ j1=2i transition

should also be significantly reduced, is depicted in Fig.

9d. There, the modulation depth was lower and the peak
centered at (2.5, 2.5) MHz became significantly narrower

along the m1 ¼ �m2 direction. This set of spectra shows

that the elongation of the peak, centered at the 2H

Larmor frequency along the diagonal, is induced by the

reduction in the relative contributions from the

j � 1=2i $ j1=2i transition, which usually extends along

the m1 ¼ �m2 direction, at the expense of the other

transitions that run more parallel to the diagonal, as
shown in Fig. 6.

Comparison with the spectra of VOðD2OÞ2þ
5 (Fig. 8)

shows that the ridges in the ð�;þÞ quadrant do not

originate from any of the M $ M � 1 transitions with

M ¼ �3=2;�5=2. In addition, the shape of the

ðmdq
1=2

; mdq�1=2
Þ and ð2msq

1=2
; 2msq�1=2

Þ cross-peaks for Mn(II) is

more ‘‘square’’ and less elongated along the m1 ¼ �m2

direction, probably due to contributions of the

j � 1=2i $ j � 3=2i and j � 3=2i $ j � 5=2i transitions

and of autocorrelation peaks. The higher intensity of the

higher order peaks ½ð3msq
1=2

; 2msq�1=2
Þ and ð3msq

1=2
; 3msq�1=2

Þ� is

attributed primarily to the presence of more interacting

nuclei (12 vs. 10).

We have tried to isolate the contributions of the

j � 3=2i $ j � 1=2i and j � 5=2i $ j � 3=2i transitions
by recording the spectra with different MW power.

According to Fig. 2, the contributions of the j � 1=2i $
j1=2i; j � 1=2i $ j � 3=2i transitions reach maximum at

a lower power than the j � 3=2i $ j � 5=2i transitions.

Hence, by increasing the power, the relative intensities

of the latter should increase. Fig. 10 presents spectra

recorded at a field of 3387 G with fixed pulse length and

different power settings. The spectrum shown in Fig. 10a
was recorded with an MW power optimized for a

maximum echo intensity, whereas that shown in Fig.

10b was recorded with a significantly higher power to

augment the contribution of the j � 3=2i $ j � 5=2i
transitions. This led to rather minor changes in the

spectrum; narrowing along the m1 ¼ �m2 direction,

consistent with increased contribution of the j � 3=2i $
j � 5=2i transitions, and increased intensities of the high
order peaks of the type ð3msq

1=2
; 2msq�1=2

Þ and ð3msq
1=2

; 3msq�1=2
Þ.

We have shown through ESEEM simulations that in

S ¼ 5=2, as in S ¼ 1=2 systems, sum combinations

Fig. 10. HYSCORE spectra of MnðD2OÞ2þ
6 recorded at 3387 G with

fixed pulse lengths of 30 ns and different power settings. The spectrum

shown in (a) was recorded with optimized power for a maximum total

echo intensity (13 dB) whereas that shown in (b) was recorded with

significantly higher power (7 dB).

Fig. 9. Experimental HYSCORE spectra of MnðD2OÞ2þ
6 recorded at

(a) 3000, (b) 3276, (c) 3387, and (d) 3670 G. The spectra were recorded

at 8 K, s ¼ 0:33ls and MW pulses of 30 ns.
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arising from the central transition are expected, al-
though with a relatively lower intensity. Two- and four-

pulse ESEEM experiments on MnðH2OÞ2þ
6 and

FeðH2OÞ2þ
6 have been carried out, and although a strong

peak at 2m0I of the protons was observed, a shifted peak

similar to that observed for CuðH2OÞ2þ
6 [33] or

VOðH2OÞ2þ
5 [31] has not been detected. Similarly, Mims

et al. [14] have observed a lower intensity for the 2mI
features in the two-pulse waveform of solutions of
FeCl3. Currently, we have no explanation for the ab-

sence of these lines and we can only speculate that it may

be due to some effect of the ZFS that was not taken into

account in our simulations.

5. Discussion

The HYSCORE spectra of half-integer high-spin

systems, such as the Kramers� multiplets S ¼ 3=2 or

S ¼ 5=2, consist in principle, of inter-M-manifold cor-

relations corresponding to each of the allowed EPR

transitions. In orientationally disordered systems these,

correlations exhibit lineshapes with characteristics that

are strongly dependent on the M ;M � 1 values involved.

When jaisoj > jT?j cross-peaks corresponding to the dif-
ferent transitions are well separated and informative. For

example, when T? is small with respect to the line width

and cannot be evaluated from the j � 1=2i $ j1=2i
cross-peaks, it may be determined from those of the

j � 1=2i $ j � 3=2i or j � 3=2i $ j � 5=2i transitions,

where the anisotropy increases by a factor of 3 or 5, at

least in one dimension. In contrast when jaisoj < jT?j, the

presence of cross-peaks due to a number of EPR tran-
sitions is actually troubling as they all overlap, reduce the

resolution, and consequently impede spectral analysis

and the extraction of hfi and nqi parameters. This is the

situation for MnðD2OÞ2þ
6 , where the spectrum, although

dominated by the j � 1=2i $ j1=2i transition, is less re-

solved and has more signals on the diagonal compared to

the corresponding S ¼ 1=2 system.

Another complication is the assessment and control
of the contribution of the various transitions to the

HYSCORE spectrum. One of the experimental param-

eters capable, in principle, to control this is the strength

of the MW irradiation field due to the different nutation

frequencies of the various EPR transitions. Unfortu-

nately, those of the j � 1=2i $ j1=2i and j � 1=2i $
j � 3=2i have a rather similar behavior and therefore

one should concentrate on the j � 3=2i $ j � 5=2i
transitions. These, however, have the largest inhomo-

geneous broadening due to the ZFS and therefore their

relative contribution to the signal is low and, conse-

quently, the experimental implementation of this ap-

proach has failed. Another possibility is to select

different transitions by choosing the appropriate mag-

netic field at which the HYSCORE spectrum is mea-

sured. This approach works well when the ZFS is
relatively small such that the j � 1=2i $ j1=2i signals

are very narrow, as observed for Mn(II) complexes at

high fields [34,35]. But, at X-band the central transition

is often too broad and this requires measurements at the

extreme edges of the spectrum where the signal becomes

again too weak. Hence, it is expected that for most

practical cases it is the j � 1=2i $ j1=2i transition that

will dominate the spectrum.
In light of the above, to profit from the unique fea-

tures of the various cross-peaks of the j � 1=2i $
j � 3=2i and j � 3=2i $ j � 5=2i transitions, other

methods to resolve them have to be devised. It is possible

that an approach similar to that suggested by Hofbauer

and Bittl [36] where the time window at which the echo is

sampled is varied may yield the desired resolution.

6. Summary and conclusions

General expressions for the echo intensity in several

ESEEM and HYSCORE experiments for S > 1=2

systems and a small ZFS were derived. The charac-

teristics of the HYSCORE cross-peaks arising from

the different EPR transitions, under conditions of se-
lective excitation, were explored using simulations,

specifically for half-integer spins, S ¼ 3=2; 5=2. It was

found that under conditions of weak hyperfine cou-

plings and a dominating anisotropic hyperfine inter-

action, the peaks of the various EPR transitions

overlap and thus reduce the resolution of the spec-

trum. In contrast, when the isotropic hyperfine is lar-

ger than the anisotropic part, the individual
contributions of all transitions are resolved and can be

used to extract the anisotropic part more accurately.

Experimental HYSCORE spectra of MnðD2OÞ2þ
6 in a

frozen solution showed a behavior of a larger aniso-

tropic hyperfine interaction and the spectrum is dom-

inated by the j � 1=2i $ j1=2i transition. The effect of

the other transitions is limited to the increased inten-

sity of signals on the diagonal and a reduction in the
spectral resolution.

In addition, some useful and simple analytical

derivations available for the S ¼ 1=2, I ¼ 1=2 case

were extended for S > 1=2: (i) An analytical expres-

sion for the generalized modulation depth was given.

It predicts that an enhanced intensity of nuclear

modulations should arise from forbidden EPR tran-

sitions for which jDM j ¼ 2. (ii) The components of an
axially symmetric hfi were related to ‘‘geometrical’’

parameters derived from the shapes of the HYSCORE

cross-peaks of each of the EPR transitions. (iii) An

analytical expression for the powder ENDOR line-

shapes for an axially symmetric hfi was derived. This

is useful to predict the basic characteristics of the

ESEEM and HYSCORE.
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Note added in proof

In a recent publication (A.V. Astashkin and A.M.

Raitsimring J. Chem. Phys., 117, 2002) it was shown

that the ZFS introduces inhomogeneous broadening to

the sum combination peaks of the j � 1=2i � j1=2i
transition which accounts for its low intensity.

Appendices: Analytical expressions for axial S =5=2,
I = 1=2 system

Appendix A. Modulation-depth factor

For a nucleus with I ¼ 1=2 and an axially symmetric

hfi interaction, an explicit expression for the modulation

depth, kM ;M 0 , similar to that existing for S ¼ 1=2 system

[2,3,18], can be derived, yielding:

kM ;M 0 ¼ sin2 #M ;M 0

t ¼ B2m2
0I

m2
I ;Mm2

I;M 0 þ B2m2
0Ið1 � jDM j2Þ

; ðA:1Þ

where jDM j ¼ jM �M 0j. Since usually DM ¼ 1 the second

term in the denominator vanishes and Eq. (2) reduces to
that given in reference [2] for S > 1=2. The ENDOR/

ESEEM frequencies, mI;M for axial systems are given in

Eq. (23) or Eq. (C.2). The relation in Eq. (A.1) reduces to

the usual modulation depth factor ka;b for S ¼ 1=2 [2,3].

The appearance of jDM j in the denominator of Eq.

(A.1) shows that if a forbidden EPR transition, such as a

electronic double quantum transition with jDM j ¼ 2,

can be excited, the nuclear modulation effect can be
enhanced. This effect can be important for nuclei with

low modulation depth for jDM j ¼ 1. However, since the

excitation of forbidden EPR transitions with jDM j ¼ 2

become possible when the ZFS is non-negligible, the

relation given in Eq. (A.1) should be reevaluated under

conditions of finite ZFS. Nonetheless, we assess that its

essence will most probably not change significantly.

Appendix B. Cross-peaks and hyperfine parameters in

HYSCORE powders

Following the derivation of Dikanov et al. [6,7] which

describes the cross-peak lineshape for S ¼ 1=2, it is

possible to derive a similar relation for the ENDOR

frequencies, mI ;M , of an S ¼ 3=2 or an S ¼ 5=2 system
according to:

mI ;M ¼ F ðmI ;M 0 Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QM ;M 0m2

I ;M 0 þ GM ;M 0

q
: ðB:1Þ

The constants QM ;M 0 and GM ;M 0 are the slope and the

intercept, respectively, of the linear plots of m2
I;M vs. m2

I;M 0

derived from the cross-peak lineshapes (M and M 0 define
the EPR transition). This type of relation is strictly valid

for nuclei with spin I ¼ 1=2 with an axially symmetric

hfi. It is also accurate for the degenerate transitions of

higher half-integer nuclear spins with a negligible nqi.

The slope, QM ;M 0 , can be rewritten in terms of the

nuclear Zeeman and the hfi parameters as:

QM ;M 0 ¼ M ½2m0I þMð2aiso þ T?Þ�
M 0½2m0I þM 0ð2aiso þ T?Þ�

: ðB:2Þ

In the limit of a weak hyperfine interaction with respect to

m0I , defined by j2aiso þ T?j � 4m0I , the slope Q1=2;�1=2 be-
comes approximately )1 and the curve mI ;1=2 ¼ F ðmI;�1=2Þ
in Eq. (B.1) close to perpendicular to the diagonals. In

contrast, for all the other values of M, the projections of

the connected pairs have the same sign rendering the

slope always positive. For S ¼ 5=2, increasing jM j to the

maximum value of 5/2 turns the slope closer to unity,

generating ridges more parallel to the diagonal.

The expression for the intercept GM ;M 0 is more com-
plicated and will be first given in its most simple form

using the mk and m? singularities of the ENDOR powder

patterns.

GM ;M 0 ¼
m2
kM 0m2

?M � m2
?M 0m2

kM

m2
kM 0 � m2

?M 0
; ðB:3Þ

where

mMk ¼ m0I þMAk and mM? ¼ m0I þMA?;

Ak ¼ aiso þ 2T?; A? ¼ aiso � T?:
ðB:4Þ

For M 0 ¼ M � 1;GM ;M 0 becomes:

GM ;M�1 ¼
�m0I 2m2

0I þ ð2M � 1ÞAkm0I þ 2MðM � 1ÞA?Ak
� 	

ðM � 1Þ 2m0I þ ðM � 1ÞAk
� 	 :

ðB:5Þ
Finally, the hyperfine components can be directly ex-

tracted according to:

aiso ¼
½Q�Mð1�QÞ�m0I � 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G½M2 �ðM � 1Þ2Q� þQm2

0I

q
M2ðQ� 1Þ�Qð2M � 1Þ ;

ðB:6Þ

T? ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G½M2 � ðM � 1Þ2Q� þ Qm2

0I

q
3½M2ðQ� 1Þ � Qð2M � 1Þ� ; ðB:7Þ

where the subscripts M ;M � 1 of QM ;M�1 and GM ;M�1

were omitted for the sake of clarity. Only the upper or

the lower sign combinations in both equations can be
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combined, thus, generating two different sets of hyper-
fine parameters. This ambiguity arises from the squared

ENDOR frequencies in Eq. (B.1) and the always-posi-

tive frequencies in experimental ENDOR and ESEEM

spectra. An additional ambiguity originates from the

inability to distinguish between the M and M 0 manifolds.

This yields an additional set of similar equations by

exchanging M and M 0 in Eq. (B.1). Alternatively, the

above equations can be used twice treating each pair of
the symmetric HYSCORE cross-peaks across the diag-

onal separately. Thus at the most, a total of four dif-

ferent acceptable sets of aiso and T? for each symmetric

pair of lines is obtained.

Two additional factors complicate the task of deter-

mination of the hyperfine parameters: (i) The presence

of an hfi with a rhombic symmetry and a nqi which were

not taken into account. (ii) Overlap of the signals from
the different EPR transitions as shown in the experi-

mental and simulated spectra presented earlier. There is,

however, a good prospect to succeed with the determi-

nation of the hyperfine couplings parameters given by

Eqs. (B.6) and (B.7) if several transitions M $ M � 1

can be resolved, assigned, and evaluated for the same

system. In that case, the equation system is overdeter-

mined and this property can be used to eliminate some
of the four potential solutions.

It has been shown that for S ¼ 1=2 mk and m? can be

determined from the intersection of the cross-peak rid-

ges with the curve ma þ mb ¼ 2m0I [2]. For S ¼ 5=2, this

holds only for the ridges of the j � 1=2i $ j1=2i tran-

sition. For the other transitions, the curve to be con-

sidered is mM þ mM�1 ¼ 2m0I � Að2M � 1Þ. The latter

depends on A which is orientation dependent and
therefore not very useful for determining mMk and mM?.

Appendix C. Powder patterns of ENDOR lines

Simulations of the ENDOR powder patterns are of-

ten relevant as a reference when the exact expressions of

the ESEEM and HYSCORE signals and their lineshape

properties are considered in some limiting approximate

cases. The quantities kM ;M 0 , and the ENDOR/ESEEM

frequencies, as well as their linear combinations
mI ;M � mI ;M�1, are strongly orientation dependent. Con-

sequently, the numerical superposition over all possible

orientations for orientationally disordered samples may

exhibit slow convergence, particularly for the highest

values of jM j because of its larger effective anisotropy

jmMk � mM?j. While for the ESEEM experiment this av-

eraging has to be performed numerically due to the

complicated orientation dependence of the modulation
amplitudes, it was possible to obtain a relatively simple,

analytical expression for ENDOR powder lineshape.

This is given (to an arbitrary overall factor, the same for

all M) by:

PMðmÞ ¼
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm2
Mk � m2

M?Þðm2 � m2
M?Þ

q ; ðC:1Þ

where two frequency regions for m, mM? < m6 mMk or
mMk < m6 mM?, are possible for the explicit lineshape

functions PMðmÞ, depending on the magnitudes and the

signs of the parameters m0I ; aiso, and T? (mM? and mMk are

defined in Eq. (B.4)).

In analogy to the expression for the ENDOR fre-

quencies for S ¼ 1=2 and an arbitrary orientation given

by Dikanov and Bowman [7], we can write:

mI ;Mð#Þ ¼ ½m2
M? þ ðm2

Mk � m2
M?Þ cos2 #�1=2

: ðC:2Þ

The orientation dependence of the frequency mI;M , given

by Eq. (C.2), is very similar to that of the spherical

harmonic Y20ð#Þ / 3 cos2 #� 1, involved in the secular

part of the usual magnetic interactions expressed as

second order tensors. Thus, similar to the expression

derived for powder lineshapes of the g, hfi and nqi

Fig. 11. ENDOR spectra of an 15N nucleus coupled to an S ¼ 5=2

system in an orientationally disordered system obtained by (a) nu-

merical averaging and (b) using Eq. (C.3). (c) ESEEM powder pattern

obtained by numerical superposition of the ESEEM amplitudes (Eq.

(A.1)) on the ENDOR powder. In these computations an equal weight

was considered during superposition of the different electronic-transi-

tion signals. The parameters used in the simulations were aiso ¼ 2:44,

T? ¼ 0:39; and m0I ¼ 1:42 MHz, ðB0 ¼ 3300 G) [38]. The spectra were

convoluted with a Gaussian width a half-height of 0.16 MHz/point.
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tensor [39] and using Eqs. (B.4) and (C.2), Eq. (C.1) was
derived. Ideally, if all the EPR transition, were uni-

formly excited (at different orientation subspaces), the

relation that follows should be taken as a simplified

ENDOR lineshape:

P ðmÞ ¼
XS

M¼�Sþ1

½SðS þ 1Þ �MðM � 1Þ� � ½PMðmÞ þ PM�1ðmÞ�:

ðC:3Þ

Otherwise an additional weighing factor should be ad-
ded. Notice that the first factor under the square root in

the denominator of Eq. (C.1) for the lineshape PM con-

tributes to the variation of the weights of each term in

the above sum along with the coefficients ½SðS þ 1Þ�
MðM � 1Þ� in the summation. The relation in Eq. (C.3)

was compared with the lineshape obtained from nu-

merical spatial averaging [37], and was found to give

identical results for all practical purposes as shown in
Fig. 11. It also shows the superimposed ESEEM am-

plitudes of the basic ENDOR frequencies and their

combinations in a uniform spatial-orientation distribu-

tion for ideal irradiation conditions. In this case, the

weight was taken as Pð#Þ ¼ ½SðS þ 1Þ �MðM � 1Þ�
kM ;M�1ð#Þ sin#, where kM ;M�1ð#Þ is the relevant modu-

lation depth (see Eq. (A.1)). The depth factor kM ;M�1ð#Þ,
included in the weight, reduces significantly the contri-
butions of all transitions, except the j � 1=2i $ j1=2i
transition. The ENDOR signals of the j � 3=2i $
j� 1=2i are also visible, probably due to satisfaction of

matching condition [7,37], j2aþ T?j ffi 4m0I for

MS ¼ �1=2.

Unfortunately, it is not possible to obtain the

ESEEM powder pattern by merely multiplying PM ðmÞ
with kM ;M�1ð#Þ since the explicit dependence of P ðmÞ
on # has to be taken into account. An attempt to

obtain analytic expressions for the ESEEM powders,

as in ENDOR, including kM ;M�1ð#Þ in the statistical

weight, was found to be too tedious. To the best of

our knowledge, there have been so far no other ex-

plicit expressions for ESEEM lineshapes in the litera-

ture with the direct functional form P ðmÞ as in Eq.

(C.1).
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